Control Systems I

Loop Shaping

Colin Jones

Laboratoire d'Automatique

Loop Shaping

Goal

Design a controller to achieve a set of specifications on the closed-loop system

Challenge

Closed-loop transfer functions are a highly nonlinear function of the control law

$$\mathcal{T} = \frac{GK}{1 + GK}$$

$$S = \frac{1}{1 + GK}$$

Idea

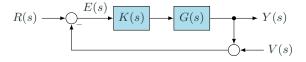
Define closed-loop characteristics in terms of open-loop response GK.

Shaping the response GK is **linear** in K, and much easier

2

Sensitivity & Complementary Sensitivity

Recall: Closed-Loop Transfer Functions



Two quantities that define the performance of the system:

• Response of error E(s) to output noise V(s)

$$\mathcal{S}(s) := rac{E(s)}{V(s)} = rac{1}{1 + G(s)K(s)}$$
 Sensitivity function

• Response of output Y(s) to reference R(s)

$$\mathcal{T}(s) := \frac{Y(s)}{R(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)} \quad \text{Complementary sensitivity function}$$

3

Sensitivity & Complementary Sensitivity Functions

Sensitivity Function

$$S(s) = \frac{E(s)}{V(s)} = \frac{1}{1 + G(s)K(s)}$$

- Impact of noise on the error
- · Ideal value : 0

Complementary Sensitivity Function

$$\mathcal{T}(s) = \frac{Y(s)}{Y_c(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

- Impact of reference on the output
- · Ideal value: 1

Functions are complementary:

$$S(s) + T(s) = \frac{1}{1 + G(s)K(s)} + \frac{G(s)K(s)}{1 + G(s)K(s)} = 1$$

Changes in one will cause changes in the other - limits of performance

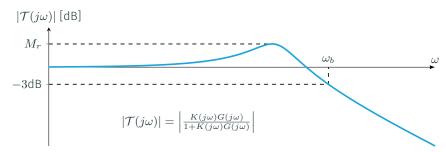
4

Frequency Response

The sensitivity and complementary sensitivity functions are transfer functions:

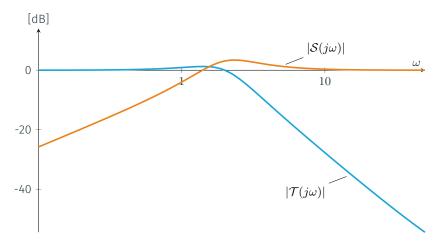
- · We can compute their frequency responses: $\mathcal{S}(j\omega)$, $\mathcal{T}(j\omega)$
- These describe the response of the system in terms of disturbance rejection and tracking performance
- · By shaping these, we can design a system with desired behaviour
- · Complementarity represents an inherent tradeoff: tracking vs noise rejection
- · Idea: Good tracking and noise rejection at low frequencies, bad at high

Complementary Sensitivity Function

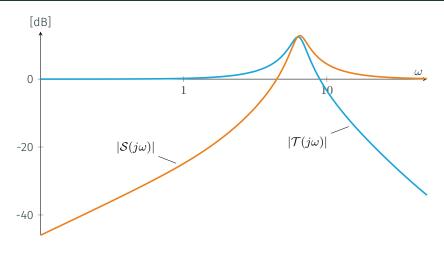


Desired shape:

- Low-frequency gain of 0 dB
- \cdot Small resonance peak M_r at the resonant frequency ω_r
- \cdot Large bandwidth defined by the pass-band $[0,\omega_b]$, and the cutoff-frequency ω_b
- High roll-off after ω_b to make the system insensitive to measurement noise, and unmodeled dynamics

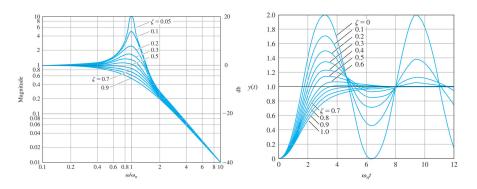


Low gain / high stability margin

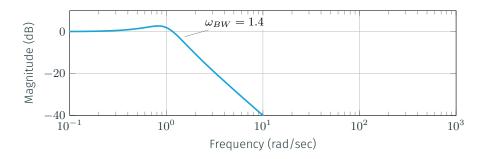


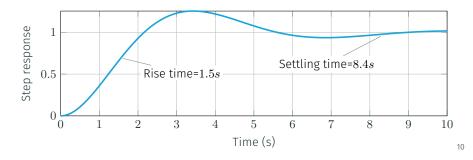
High gain / low stability margin

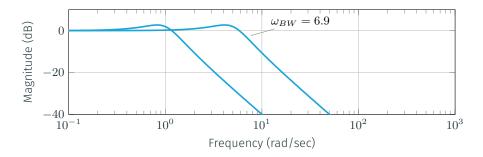
Relation to Time-Domain Behaviours



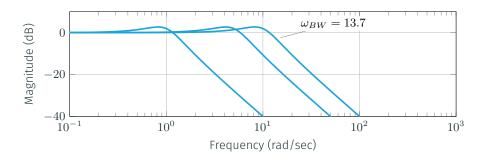
Magnitude of resonant peak related to the damping of the closed-loop system.

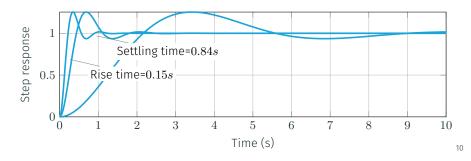


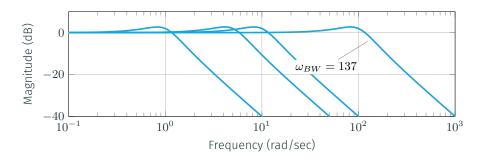


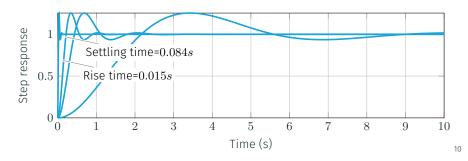


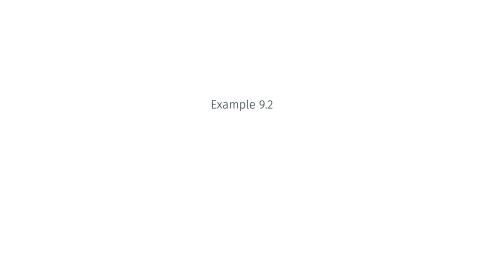












Loop Shaping

Open-Loop Properties ⇔ Closed-Loop Properties

$$\mathcal{T}(j\omega) = \frac{K(j\omega)G(j\omega)}{1 + K(j\omega)G(j\omega)} = 1 - \frac{1}{1 + K(j\omega)G(j\omega)}$$

 $\mathcal{T}(j\omega) = 1$ for small ω

 \leftrightarrow

 $K(j\omega)G(j\omega)$ large for small ω

 \rightarrow Integrator (pole at 0)

$$|\mathcal{T}(j\omega)| \ll 0dB$$
 for large ω

 \leftrightarrow

 $|K(j\omega)G(j\omega)|\ll 0dB$ for large ω

Low resonance peak

 \leftrightarrow

 \leftrightarrow

Large stability margins

- ightarrow Resonance when $|1+K(j\omega_r)G(j\omega_r)|$ is small
- $\rightarrow K(j\omega_r)G(j\omega_r) \approx -1$

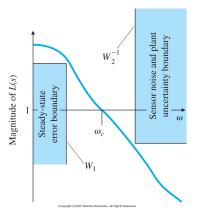
Specified rise time/settling time

Crossover frequency

ightarrow Open-loop crossover frequency pprox Closed-loop bandwidth

Can describe good closed-loop behaviour via open-loop frequency response

Loopshaping Goals



(Note: L(s) = K(s)G(s) is the **Loop gain**)

Low-frequency slope (system type) and gain are chosen for steady-state error High-frequency roll-off is determined by actuator/ sensor limitations and system bandwidth goals.

Closed-loop Bandwidth \cong Crossover Frequency

The open-loop frequency response has been designed for

$$|KG(j\omega)|\gg 1 \text{ for } \omega\ll\omega_c$$

$$|KG(j\omega)|\ll 1 \text{ for } \omega\gg\omega_c$$

The closed-loop response is therefore

$$|\mathcal{T}(j\omega)| = \left| \frac{KG(j\omega)}{1 + KG(j\omega)} \right| \approx \begin{cases} 1, & \omega \ll \omega_c \\ |KG|, & \omega \gg \omega_c \end{cases}$$

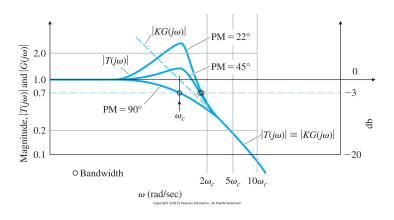
Around crossover, we have $|KG(j\omega)| \approx 1$ and $\mathcal{T}(j\omega)$ depends on the phase margin

$$KG(j\omega_c) = e^{j(\pi-\phi)} = -e^{-j\phi}$$

$$|\mathcal{T}(j\omega_c)| = \left| \frac{KG(j\omega_c)}{1 + KG(j\omega_c)} \right| = \left| \frac{-e^{-j\phi}}{1 - e^{-j\phi}} \right|$$

If
$$\phi=90^\circ$$
, then $|\mathcal{T}(j\omega_c)|=0.707=-3 ext{dB}$

Closed-loop Bandwidth \cong Crossover Frequency



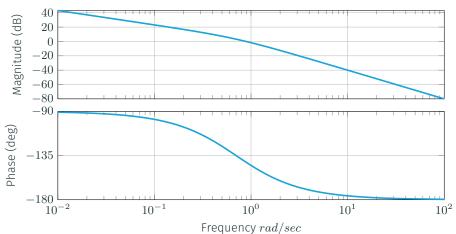
Closed loop bandwidth is within a factor of two of the crossover frequency

$$\omega_c \le \omega_{BW} \le 2\omega_c$$

Resonance and Phase Margin

Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$



Resonance and Phase Margin

Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$

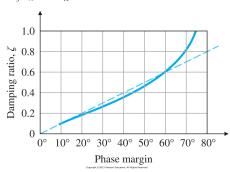
With unity feedback, we get the closed-loop system

$$\mathcal{T}(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$PM = \tan^{-1} \left[\frac{2\zeta}{\sqrt{\sqrt{1 + 4\zeta^4} - 2\zeta^2}} \right]$$

$$\approx 100\zeta$$

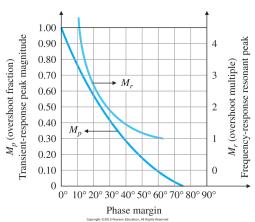
$$0.8 \text{ of } 0.8 \text{ of } 0.8 \text{ of } 0.6 \text{ of } 0.6 \text{ of } 0.4 \text{ of } 0.2 \text{ of } 0.2 \text{ of } 0.4 \text{ of } 0.2 \text$$



Resonance and Phase Margin

Consider the prototype open-loop model

$$G(s) = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$



Damping ratio determines the step response overshoot, and the size of the resonant peak.

Loopshaping Goals

- \cdot KG large for small ω (Steady-state error)
- \cdot KG small for large ω (Modeling errors, etc)
- · Crossover frequency chosen according to desired closed-loop bandwidth
- Good stability margins

Goal: Choose K(s) to satisfy these requirements

Tools:

- · Overall gain: Moves magnitude plot up and down
- · Lead compensator
- Lag compensator

Lead Compensator

Phase Lead Compensator

Lead Compensator

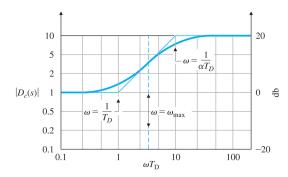
$$D_c(s) := \frac{T_D s + 1}{\alpha T_D s + 1} \quad \alpha < 1$$

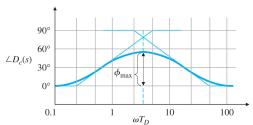
Within interval of interest

- \cdot Phase increased by $\phi_{
 m max}$
- Slope increased by 20dB/dec

Utility:

 Place near crossover frequency to increase phase





How much is the phase increased?

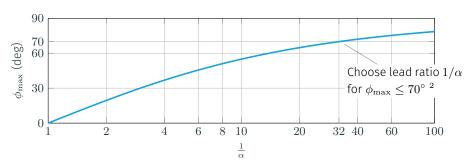
Max phase increase happens at the center of the pole and zero¹

$$\omega_{\max} = \frac{1}{T_D \sqrt{\alpha}} \qquad \qquad \log \omega_{\max} = \frac{1}{2} \left(\log \frac{1}{T_D} + \log \frac{1}{\alpha T_D} \right)$$

The amount of phase lead at this point is

$$\sin \phi_{\max} = \frac{1 - \alpha}{1 + \alpha}$$

$$\alpha = \frac{1 - \sin \phi_{\text{max}}}{1 + \sin \phi_{\text{max}}}$$



¹See Problem 6.44

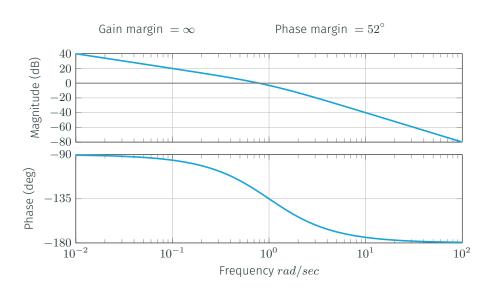
²Or gain at high frequencies may be too much, and multiple lead compensators should be used.

Consider the following system

$$G(s) = \frac{1}{s(s+1)}$$

Requirements:

- \cdot Steady-state error less than 0.1 in response to a ramp reference
- · Overshoot of less than $M_P \leq 25\%$



Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:

ightarrow Error with respect to a ramp input is $rac{1}{\gamma}$

$$\gamma = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{1}{s+1} = 1$$

Steady-state error in response to a ramp is $e_{ss}=1.$

Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:

ightarrow Error with respect to a ramp input is $\frac{1}{\gamma}$

$$\gamma = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{1}{s+1} = 1$$

Steady-state error in response to a ramp is $e_{ss}=1$.

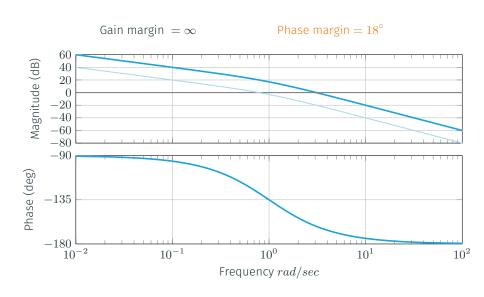
Try the simplest controller to improve this: Proportional gain K

Loop gain is now $L(s) = KG(s) = \frac{K}{s(s+1)}$.

$$\gamma = \lim_{s \to 0} sKG(s) = \lim_{s \to 0} \frac{K}{s+1} = K$$

Steady-state error in response to a ramp is $e_{ss} = \frac{1}{K}$.

$$\rightarrow$$
 Choose $K=10$



Overshoot of less than $M_P \leq 25\%$

From Slide 16 we see that a phase margin of 45° will do

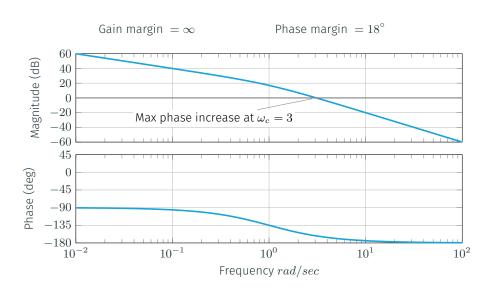
 \rightarrow Add a phase lead compensator

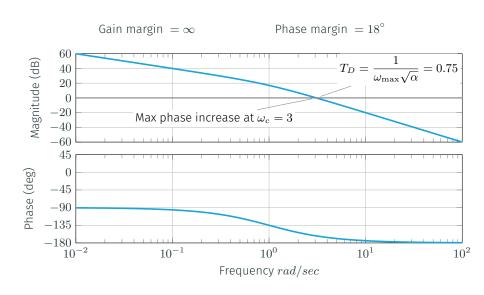
Current phase margin is $\approx 20^{\circ} \rightarrow$ Requires an increase of 25°

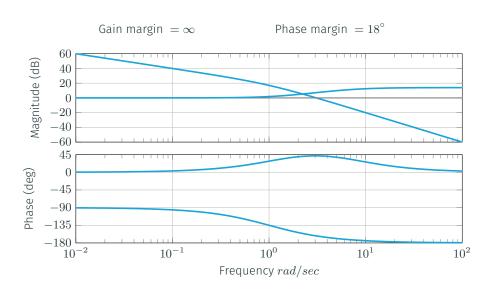
Lead compensator also increases gain \rightarrow Increases crossover frequency

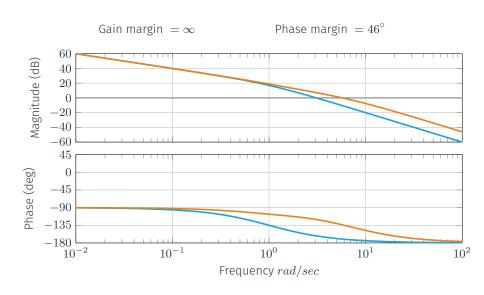
Increase phase by $\approx 40^{\circ}$ to compensate

Slide 19 shows $\alpha=1/5$ will increase phase by $\approx 40^\circ$

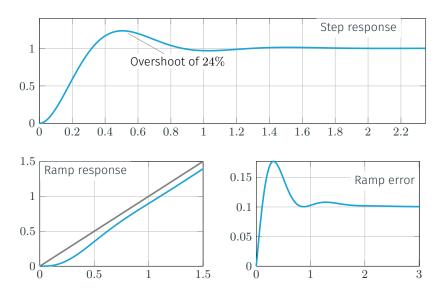








$$G(s) = \frac{1}{s(s+1)}$$



Lead Design Summary

Generally three criteria

- 1. Crossover frequency \leftarrow Bandwidth, rise time and settling time
- 2. Phase margin \leftarrow Damping coefficient ζ and overshoot M_p
- 3. Low-frequency gain \leftarrow Steady-state error

Design procedure

- 1. Choose system type and controller gain K such that
 - · steady-state gain targets are met
 - open-loop crossover frequency is a factor of two below the desired closed-loop bandwidth
- 2. Determine the increase in phase margin required (add about 10° to compensate for bandwidth increase) and choose α to give the desired increase.
- 3. Choose ω_{\max} to be the crossover frequency, and set $T_D=\frac{1}{\omega_{\max}\sqrt{\alpha}}$

Note that this procedure may require customization for any particular system.

Quick and Dirty Using Bode's Gain-Phase Relationship

Main idea: A low slope at crossover provides a good phase margin.

e.g., -20dB/dec gives a phase margin of about 90°

Slope must be constant for a decade around the crossover frequency for approximation to hold. Equivalent to choosing $1/\alpha=\sqrt{5}\approx 3$.

$$D_c(s) := \frac{3s + \omega_c}{s/3 + \omega_c}$$

Ignore the phase plot, and work only with the magnitude plot.

Gain-Phase Relationship

Bode Gain-Phase Theorem

For any stable minimum-phase system (i.e., one with no RHP zeros or poles), the phase of $G(j\omega)$ is uniquely related to the magnitude of $G(j\omega)$

$$\angle G(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \left(\frac{dM}{du}\right) W(u) du \qquad \text{(in radians)}$$

where

- $M = \log Magnitude = \ln |G(j\omega)|$
- $u = \text{normalized frequency} = \ln(\omega/\omega_0)$
- $W(u) = \text{weighting function} = \ln(\coth|u|/2)$

Gain-Phase Relationship

Bode Gain-Phase Theorem (Simple form)

$$\angle G(j\omega) \cong n \times 90^{\circ}$$

where n is the slope of $|G(j\omega)|$ in units of decade of amplitude per decade of frequency.

If the crossover frequency is ω_0 , i.e., the gain is $|K(j\omega_0)G(j\omega_0)|=1$, then

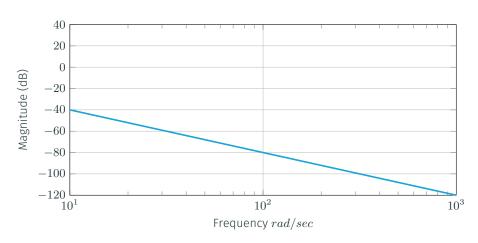
- $\cdot \angle G(j\omega_0) \approx -90^\circ$ if n=-1 (-20dB / dec)
- $\cdot \angle G(j\omega_0) \approx -180^\circ$ if n=-2 (-40dB / dec)

Main idea: A low slope at crossover provides a good phase margin.

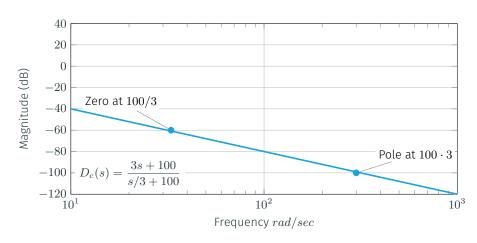
e.g., -20dB/dec gives a phase margin of about 90°

²Slope must be constant for a decade around the crossover frequency for approximation

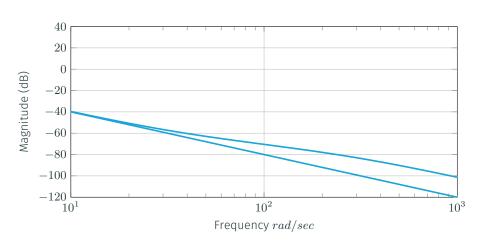
$$G(s) = \frac{1}{s^2}$$



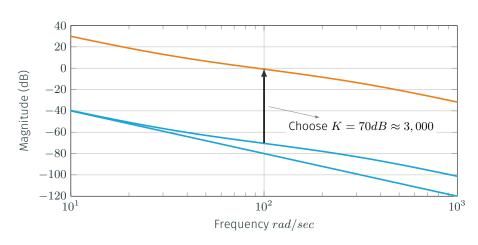
$$G(s) = \frac{1}{s^2}$$



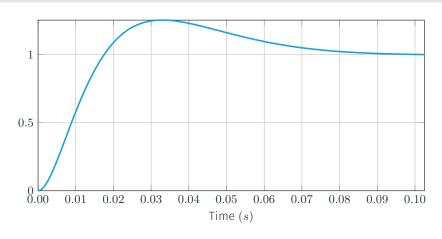
$$G(s) = \frac{1}{s^2}$$



$$G(s) = \frac{1}{s^2}$$



$$G(s) = \frac{1}{s^2}$$

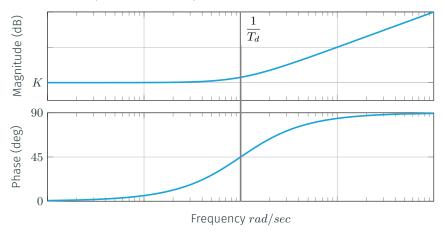


Interpretation of PD Controller

Consider the PD controller:

$$K(s) = K(1 + T_D s)$$

This is a lead compensator with the pole at $s=-\infty$, or $\alpha=0$.



Example - PD Controller

$$G(s) = 0.05 \frac{80 - s}{s(s + 2.05)}$$

Design a PD controller such that:

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05
- \cdot Closed-loop step response with time-constant less than $0.07 \mathrm{s}$
- \cdot Phase margin greater than 60°

Steady-State Error

- $\boldsymbol{\cdot}$ Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

Consider a proportional controller: K(s) = K

Steady-State Error

- Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

Consider a proportional controller: K(s) = K

$$K(s)G(s) = K \cdot 0.05 \frac{80 - s}{s(s + 2.05)}$$

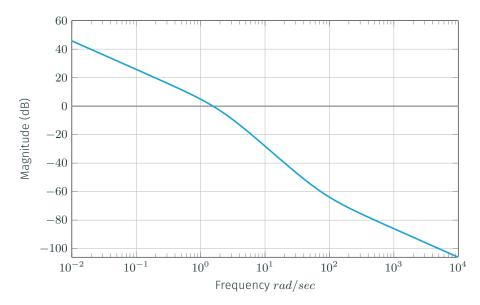
Type 1 system

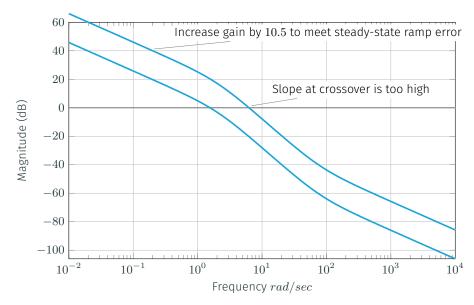
- · Zero steady-state error to a step
- Steady-state error to a ramp reference r(t)=t is $1/\gamma$

$$\gamma := \lim_{s \to 0} s^q K(s) G(s) = K \frac{B(0)}{A(0)} = K \cdot 0.05 \frac{80}{2.05} = K \cdot 1.9$$

Error =
$$1/(K \cdot 1.9) \le 0.05$$

Therefore, the gain $K > 1/(0.05 \cdot 1.9) = 10.5$





Add Lead Compensator

Goal: Improve phase margin

Add derivative term (Lead compensator)

$$K(s) = 10.5(1 + T_D s)$$

How to choose T_D ?

- · Sets bandwidth of the system
- Roughly sets the time constant of the closed-loop step response

Bandwidth and Time Constant

Assume: Phase margin of about 90° at a crossover frequency of ω_c For frequencies near ω_c , the open-loop gain is approximately:

$$K(j\omega)G(j\omega)\approx\frac{\omega_c}{j\omega}$$

The step response is approximately:

$$Y(s) = \frac{K(s)G(s)}{1 + K(s)G(s)} \cdot \frac{1}{s} \approx \frac{\frac{\omega_c}{s}}{1 + \frac{\omega_c}{s}} \cdot \frac{1}{s} = \frac{\omega_c}{s + \omega_c} \cdot \frac{1}{s} = \frac{-1}{s + \omega_c} + \frac{1}{s}$$

Gives the time response:

$$y(t) = 1 - e^{-\omega_c t}$$

The system time constant is approximately $1/\omega_c$

Add Lead Compensator

Goal: Improve phase margin

Add derivative term (Lead compensator)

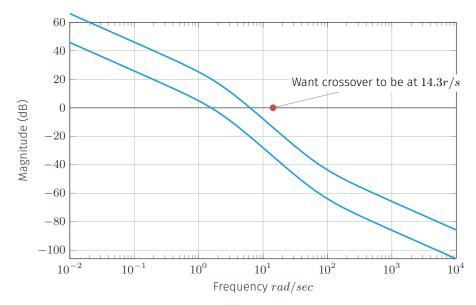
$$K(s) = 10.5(1 + T_D s)$$

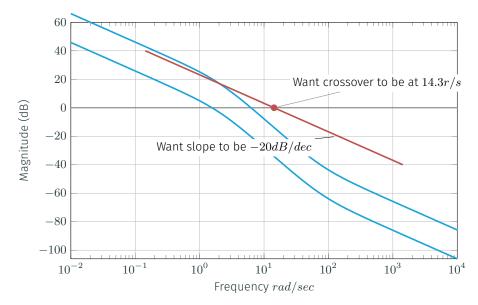
How to choose T_D ?

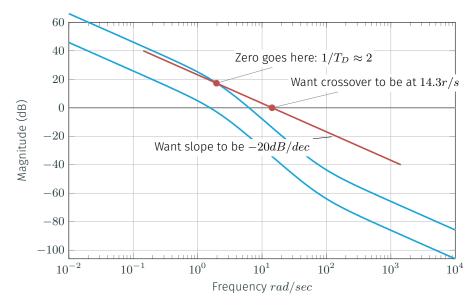
- · Sets bandwidth of the system
- Roughly sets the time constant of the closed-loop step response

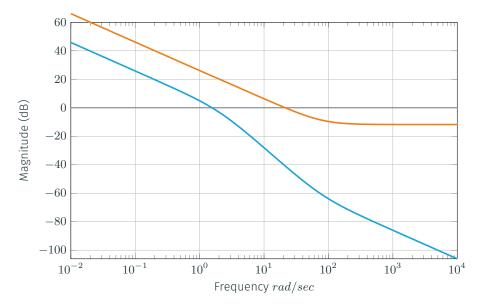
Goal: Time constant less than 0.07s

Choose
$$\omega_c \ge 1/0.07 = 14.3$$









Example - PD Controller

$$G(s) = 0.05 \frac{80 - s}{s(s + 2.05)}$$

Design a PD controller such that:

- · Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05
- \cdot Closed-loop step response with time-constant less than 0.07s
- \cdot Phase margin greater than 60°

Our final controller is:

$$K(s) = 10.5 \cdot (1 + s/2)$$

Example 9.10

Lead Compensator

Benefit

 $\boldsymbol{\cdot}$ Increase the phase near the crossover frequency

Downside

- Increases the gain at high-frequencies
 - ightarrow Increases sensitivity to noise and unmodeled dynamics

Lag Compensator

Phase Lag Compensator

Lead Compensator

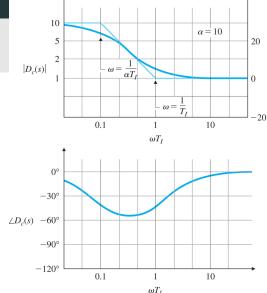
$$D_c(s) := \alpha \frac{T_I s + 1}{\alpha T_I s + 1} \quad \alpha > 1$$

Within interval of interest

- Phase decreased by up to 90°
- · Gain increased below frequency $1/T_I$

Utility:

 Increase gain at low frequencies to reduce steady-state errors



Phase Lag Compensator

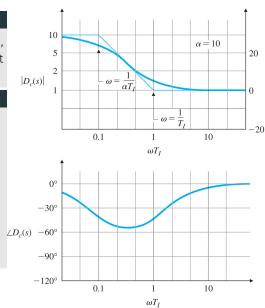
Goal

Increase low-frequency gain, without impacting transient behaviour

Idea

- Set break frequency $\frac{1}{T_I}$ below the crossover frequency, to not impact transient behaviours
- Choose α to give desired steady-state behaviour

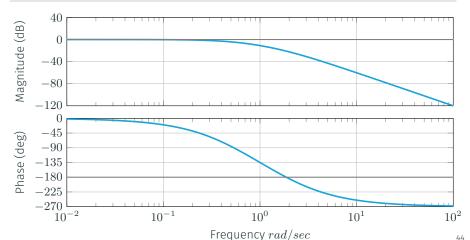
$$\lim_{s\to 0}\alpha\frac{T_Is+1}{\alpha T_Is+1}=\alpha$$



43

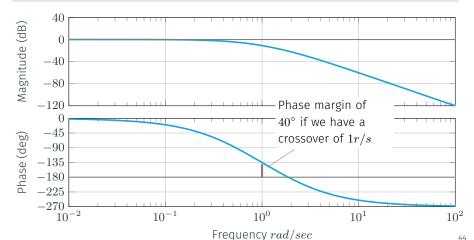
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



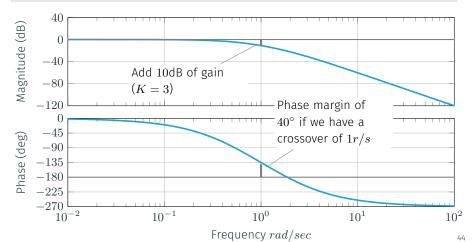
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



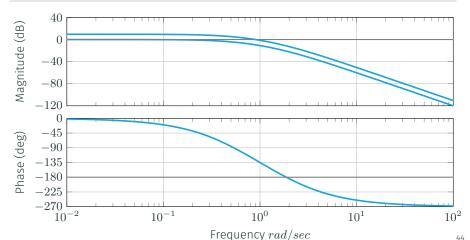
$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



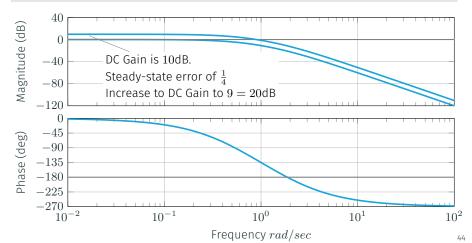
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



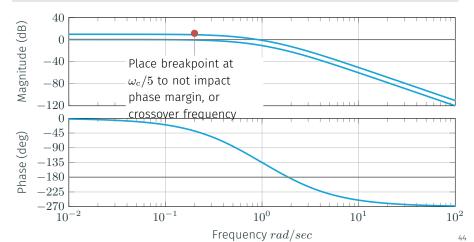
$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



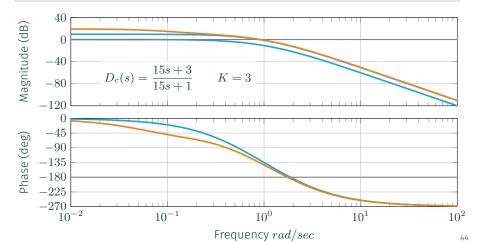
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



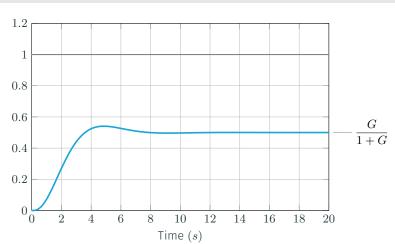
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

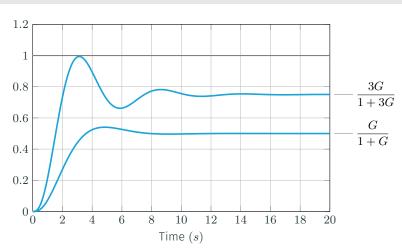
Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



45

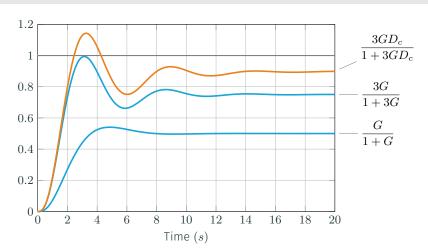
$$G(s) = \frac{1}{\left(\frac{1}{0.5}s + 1\right)(s+1)\left(\frac{1}{2}s + 1\right)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



$$G(s) = \frac{1}{(\frac{1}{0.5}s + 1)(s + 1)(\frac{1}{2}s + 1)}$$

Design a lag compensator to achieve a phase margin of at least 40° and a steady-state error with respect to a step input better than 10%.



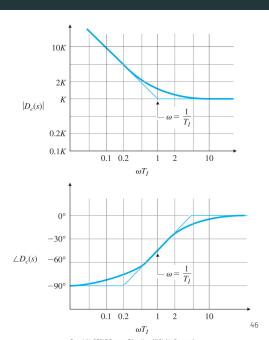
45

Relation to PI Controller

What happens when $\alpha \to \infty$?

$$KD_c(s) = K\alpha \frac{T_I s + 1}{\alpha T_I s + 1}$$
$$= K \frac{T_I s + 1}{T_I s + \frac{1}{\alpha}}$$
$$= K \left(1 + \frac{1}{T_I s}\right)$$

We see that a lag compensator is a PI controller with $\alpha=\infty$



$$G(s) = 0.05 \frac{80 - s}{s + 2.05}$$

Specifications:

- · Zero steady-state error to step command
- Phase margin greater than 60°
- · Closed-loop time constant of $1/\omega_c=0.07{\rm s}~(\omega_c=14.3{\rm rad/s})$

Example 9.11

Lead/Lag Compensator	

Lead/Lag Compensators

Lead compensator Adds phase at crossover frequency to improve margins

Impacts frequencies above the breakpoint

Lag compensator Adds gain at low frequency to improve steady-state response

Impacts frequencies *below* the breakpoint

We are free to use lead and lag filters in combination, without them impacting each other, often called lead-lag filters.

 $Lead \rightarrow PD$ controller

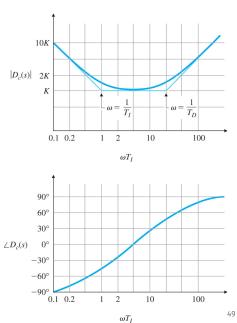
 $Lag \rightarrow PID$ controller

A PID controller is a lead/lag filter

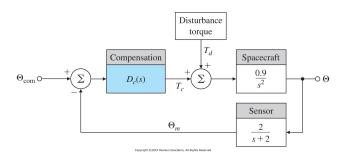
$$D_c(s) = K \left(T_D s + 1 \right) \left(1 + \frac{1}{T_I s} \right)$$

PID Lead/Lag Filter

Frequency response of PID compensator for $\frac{T_I}{T_D}=20$



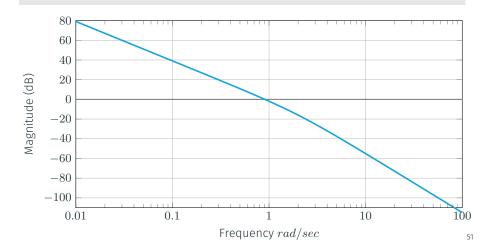
Satellite Stabilization Problem



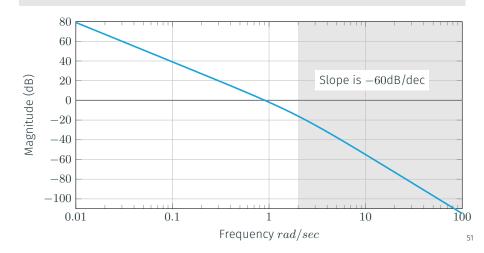
Design a PID controller for

- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible

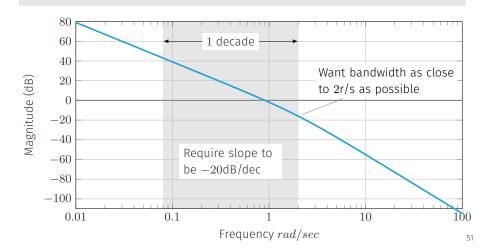
- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



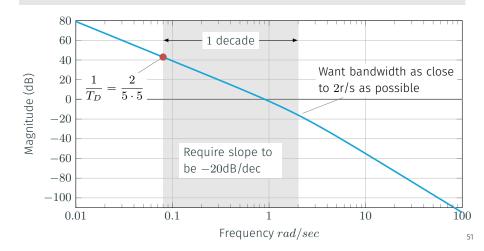
- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



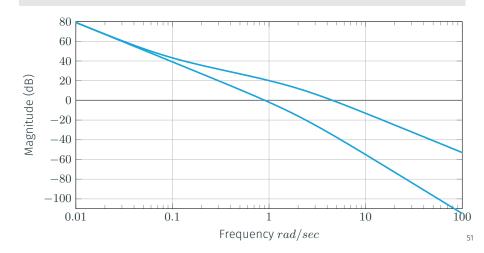
- $\boldsymbol{\cdot}$ Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



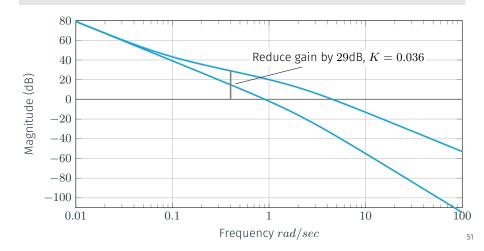
- Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



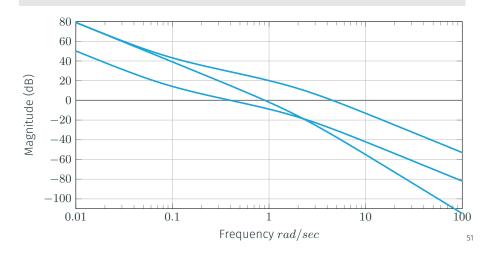
- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



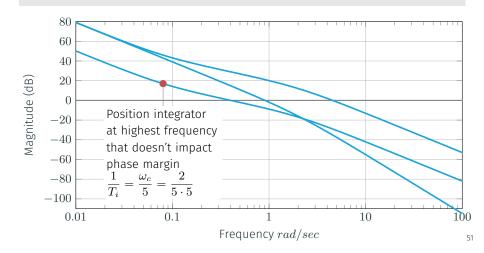
- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



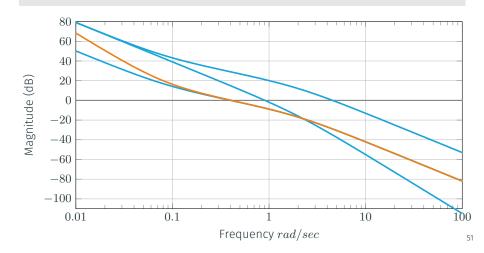
- · Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible

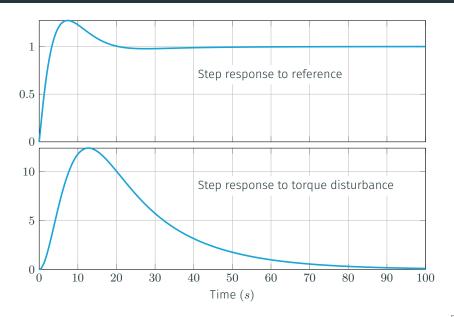


- \cdot Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- · As high a bandwidth as possible



- $\boldsymbol{\cdot}$ Zero steady-state error in response to a step disturbance torque
- \cdot A phase margin of approximately 60°
- \cdot As high a bandwidth as possible





Summary - Loop Shaping

Idea Can relate the shape of the frequency response of the open-loop system to the closed-loop sensitivity and complementary sensitivity functions

Goal

- KG large for small ω (Steady-state error)
- KG small for large ω (Modeling errors, etc)
- · Crossover frequency chosen according to desired closed-loop bandwidth
- \cdot Good stability margins / slope of KG equal to $-20 \mathrm{dB/dec}$ at crossover

Lead compensator

- Increase slope by 20dB/dec in frequency range
- Use to increase slope / phase near crossover frequency
- PD controller is a lead compensator

Lag compensator

- Use to increase gain at low frequencies
- Decreases slope by 20dB/dec / decreases phase in frequency range
- PI controller is a lag compensator

A Real System Design

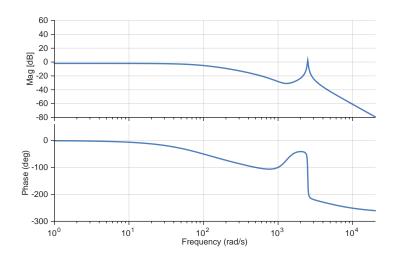
Atomic Force Microscope

$$G(s) = 8.88 \cdot 10^8 \frac{s^2 + 780s + 1.69 \cdot 10^6}{(s + 3000)(s + 1000)(s + 100)(s^2 + 50s + 6.25 \cdot 10^6)}$$

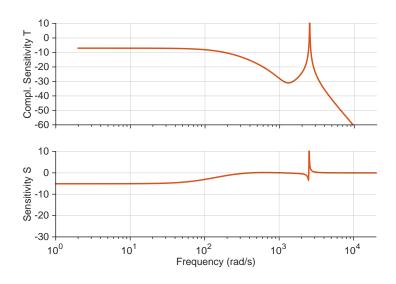
Goals

- Track ramp inputs
- Reduce sensitivity to noise at resonant frequency
- Minimize response time

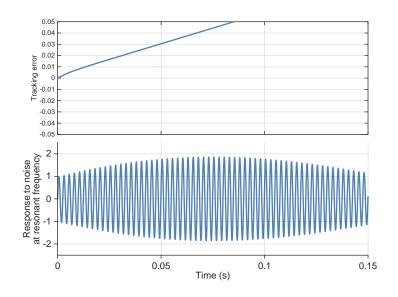
Frequency Response



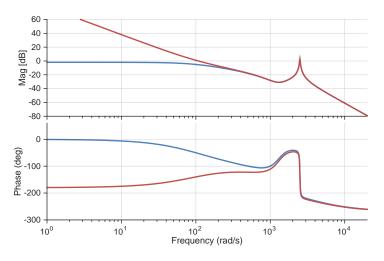
Closed-Loop Sensitivity



Step Response & Resonance Disturbance Rejection

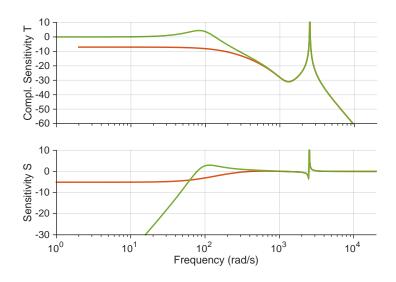


Frequency Response

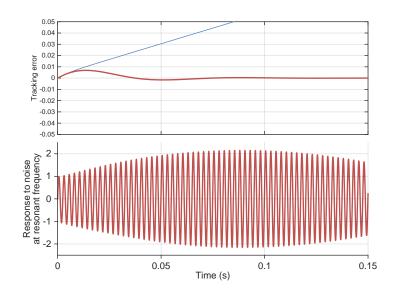


Track ramps
$$\rightarrow$$
 Add two integrators $\left(1+\frac{1}{T_is}\right)^2$

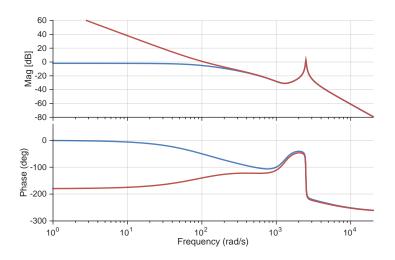
Closed-Loop Sensitivity



Step Response & Resonance Disturbance Rejection



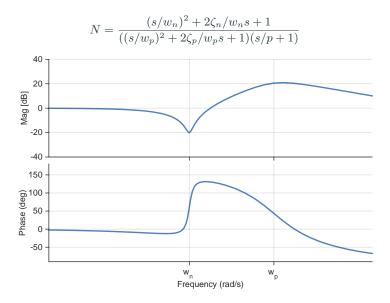
Frequency Response



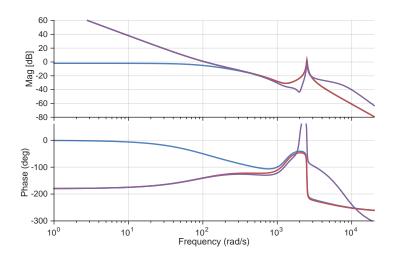
Reducing sensitivity at resonance, requires a \emph{high} gain.

Problem: drop of 180 degrees of phase.

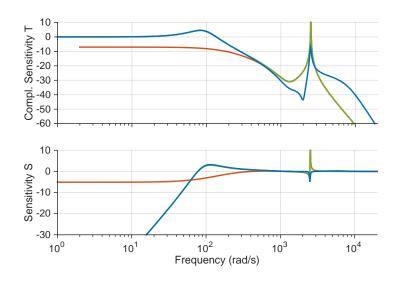
Notch Filter



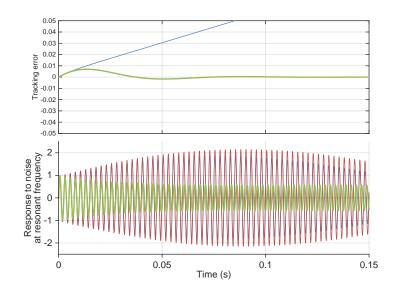
Frequency Response



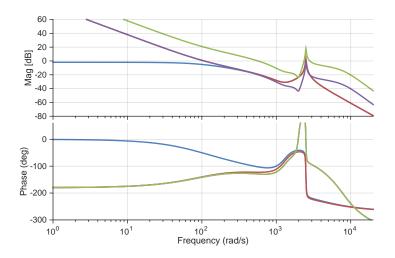
Closed-Loop Sensitivity



Step Response & Resonance Disturbance Rejection

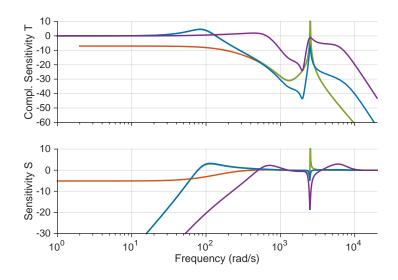


Frequency Response

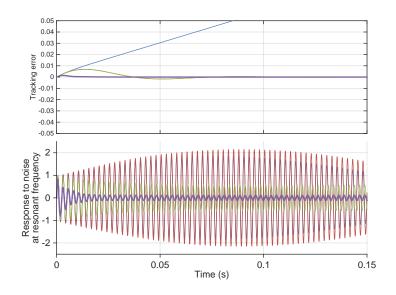


Increase gain to get best tracking performance.

Closed-Loop Sensitivity



Step Response & Resonance Disturbance Rejection



Result of a Scan

