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Loop Shaping

Design a controller to achieve a set of specifications on the closed-loop system

Challenge

Closed-loop transfer functions are a highly nonlinear function of the control law

GK o 1
1+ GK 1+ GK

T:

Define closed-loop characteristics in terms of open-loop response GK.

Shaping the response GK is linear in K, and much easier



Sensitivity & Complementary Sensitivity



Recall: Closed-Loop Transfer Functions

R(s) —>O—— K(s) —| G(s) Y (s)

T O+—V(s)

Two quantities that define the performance of the system:

- Response of error E(s) to output noise V(s)

E(s) 1
V(s) 1+ G(s)K(s)

S(s) := Sensitivity function

- Response of output Y(s) to reference R(s)

Y (s) G(s)K(s)

_ ivity f )
RG) ~ 11 GIK () Complementary sensitivity function

T(s):=



Sensitivity & Complementary Sensitivity Functions

Sensitivity Function Complementary Sensitivity Function
E(s) 1 Y(s)  G(s)K(s)
S(s) = = =
=V = 15 60KE T =¥.() = T+ GOKG)
- Impact of noise on the error - Impact of reference on the output
- Ideal value: 0 - Ideal value: 1

Functions are complementary:

1 n G(s)K(s) _
1+G(s)K(s) 1+ G(s)K(s)

Changes in one will cause changes in the other - limits of performance

S(s)+T(s) =



Frequency Response

The sensitivity and complementary sensitivity functions are transfer functions:

- We can compute their frequency responses: S(jw), T (jw)

- These describe the response of the system in terms of disturbance rejection
and tracking performance

- By shaping these, we can design a system with desired behaviour
- Complementarity represents an inherent tradeoff: tracking vs noise rejection

- Idea: Good tracking and noise rejection at low frequencies, bad at high



Complementary Sensitivity Function

|7 (jw)| [dB]

M, +

—8dB fmmmmmmmmmmm e m e

. G
ITGw)| = | e dom

Desired shape:

- Low-frequency gain of 0 dB
- Small resonance peak M, at the resonant frequency w;
- Large bandwidth defined by the pass-band [0, ws], and the cutoff-frequency wy

- High roll-off after w;, to make the system insensitive to measurement noise,
and unmodeled dynamics
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Relation to Time-Domain Behaviours
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Magnitude of resonant peak related to the damping of the closed-loop system.



Bandwidth Defines Rise Time & Settling Time
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Bandwidth Defines Rise Time & Settling Time

Magnitude (dB)

Step response

T T T 117 [ T T T 117 [ T T T T 1 117 [ T T T 117
0 — /UJBW =6.9 N
—20 |- i
_40 | [ [
107! 10° 10! 10? 10°
Frequency (rad/sec)
T T T T T T
1 | _/ \
/ Settling time=1.7s
051/ Rise time=0.29s |
0 | | | | | | | |
0 1 2 3 4 5 6 7 9 10



Bandwidth Defines Rise Time & Settling Time

Magnitude (dB)

Step response
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Bandwidth Defines Rise Time & Settling Time

Magnitude (dB)

Step response
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Example 9.2



Loop Shaping




Open-Loop Properties < Closed-Loop Properties

T) = 3 RmCm ~ |~ TTRG=GT)
T (jw) =1 for small w < K (jw)G(jw) large for small w
— Integrator (pole at 0)
|7 (jw)| < 0dB for large w VRS |K (jw)G(jw)| < 0dB for large w
Low resonance peak > Large stability margins

— Resonance when |1 4+ K (jw,)G(jw,)| is small
- K(jwr)Gljewr) & ~1

Specified rise time/settling time ~ « Crossover frequency

— Open-loop crossover frequency = Closed-loop bandwidth

Can describe good closed-loop behaviour via open-loop frequency response



Loopshaping Goals
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(Note: L(s) = K(s)G(s) is the Loop gain)
Low-frequency slope (system type) and gain are chosen for steady-state error

High-frequency roll-off is determined by actuator/ sensor limitations and system
bandwidth goals.



Closed-loop Bandwidth = Crossover Frequency

The open-loop frequency response has been designed for
|[KG(jw)| > 1 for w < we
|[KG(jw)| < 1forw > we.

The closed-loop response is therefore

12

TGl = | 2

1, w K We
1+ KG(jw) |KG|, w> w.

Around crossover, we have |KG(jw)| &~ 1 and T (jw) depends on the phase margin

KG(jwc) _ 6.7'(7'*4)) — e I?

KG(jwe)
1+ KG(jwe)

T3] =

‘ o9

1—eJ%

If $ = 90°, then | T (jw.)| = 0.707 = —3dB



Closed-loop Bandwidth = Crossover Frequency
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Closed loop bandwidth is within a factor of two of the crossover frequency

we < wBw < 2we



Resonance and Phase Margin

Consider the prototype open-loop model
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Resonance and Phase Margin

Consider the prototype open-loop model

2
Wn,

s(s + 2Cwn)
With unity feedback, we get the closed-loop system
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Resonance and Phase Margin

Consider the prototype open-loop model
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Loopshaping Goals

- K@ large for small w (Steady-state error)
- KG small for large w (Modeling errors, etc)
- Crossover frequency chosen according to desired closed-loop bandwidth

- Good stability margins
Goal: Choose K(s) to satisfy these requirements

Tools:

- Overall gain: Moves magnitude plot up and down
- Lead compensator

- Lag compensator



Lead Compensator



Phase Lead Compensator

Lead Compensator
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How much is the phase increased?

Max phase increase happens at the center of the pole and zero'

w -t logw = 1 lo L + log ——
max — TD \/a g max — 2 g TD g OZTD
The amount of phase lead at this point is
sin ¢max = 1-a o = 1= S¥n ¢max
1 + « 1 + sin ¢In&x
90
—~ 70 n
& 60| 8
= _
. Choose lead ratio 1/«
[ o 2
&30 Or fraax < 70
0 | | | | | |
1 2 4 6 8 10 20 32 40 60 100

See Problem 6.44
20r gain at high frequencies may be too much, and multiple lead compensators should be used. °



Consider the following system

1
)=+

Requirements:

- Steady-state error less than 0.1 in response to a ramp reference
- Overshoot of less than Mp < 25%

20



Gain margin = oo Phase margin = 52°
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Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:

— Error with respect to a ramp input is %

=) = i =

Steady-state error in response to a ramp is ess = 1.

22



Steady-state error less than 0.1 in response to a ramp reference

This is a Type 1 system:

— Error with respect to a ramp input is %

7 =l sG(s) =ty =

Steady-state error in response to a ramp is ess = 1.
Try the simplest controller to improve this: Proportional gain K

Loop gain is now L(s) = KG(s) = ;-

K

. K
v =l sKG(s) = lim 25 =

Steady-state error in response to a ramp is ess = %.
— Choose K =10

22



Gain margin = oo Phase margin = 18°
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Overshoot of less than Mp < 25%

From Slide 16 we see that a phase margin of 45° will do

— Add a phase lead compensator

Current phase margin is ~ 20° — Requires an increase of 25°

Lead compensator also increases gain — Increases crossover frequency
Increase phase by a2 40° to compensate

Slide 19 shows o = 1/5 will increase phase by ~ 40°

24



Gain margin = oo Phase margin = 18°
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Gain margin = oo Phase margin = 18°
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Gain margin = oo Phase margin = 18°
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Gain margin = oo Phase margin = 46°
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Example - Time Domain Result

1.5

0.5

G(s)

P 0.75s + 1
0155+ 1

Overshoot of 24%
| | | | | | | | | | |
0 02 04 06 08 1 1.2 14 16 1.8 2 2.2
Ramp response ‘ ‘
0.15 |- Ramp error
0.1
[ | 0.05 N
| | 0 | |
0 0.5 1 1.5 0 1 2 3
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Lead Design Summary

Generally three criteria

1. Crossover frequency <+ Bandwidth, rise time and settling time
2. Phase margin < Damping coefficient ¢ and overshoot M,

3. Low-frequency gain  «+ Steady-state error

Design procedure

1. Choose system type and controller gain K such that

- steady-state gain targets are met
- open-loop crossover frequency is a factor of two below the desired closed-loop

bandwidth

2. Determine the increase in phase margin required (add about 10° to
compensate for bandwidth increase) and choose « to give the desired
increase.

3. Choose wmax t0 be the crossover frequency, and set Tp = wil\/a

Note that this procedure may require customization for any particular system.



Quick and Dirty Using Bode’s Gain-Phase Relationship

Main idea: A low slope at crossover provides a good phase margin.

e.g., —20dB/dec gives a phase margin of about 90°

Slope must be constant for a decade around the crossover frequency for
approximation to hold. Equivalent to choosing 1/a = /5 ~ 3.

35 + we
De(s) i = ———
() $/3 4 we

Ignore the phase plot, and work only with the magnitude plot.

28



Gain-Phase Relationship

Bode Gain-Phase Theorem

For any stable minimum-phase system (i.e., one with no RHP zeros or poles), the
phase of G(jw) is uniquely related to the magnitude of G(jw)

LG (jwo) = %/_O; (%) W (u)du  (in radians)

where

- M = log Magnitude = In |G(jw)|
- w = normalized frequency = In(w/wo)
+ W (u) = weighting function = In(coth|u|/2)



Gain-Phase Relationship

Bode Gain-Phase Theorem (Simple form)

ZG(jw) = n x 90°

where n is the slope of |G(jw)| in units of decade of amplitude per decade of
frequency.

If the crossover frequency is wo, i.e,, the gain is | K (jwo)G(jwo)| = 1, then
« /G(jwo) =~ —90° if n = —1 (—20dB / dec)
+ /G(jwo) ~ —180° if n = —2 (—40dB / dec)

Main idea: A low slope at crossover provides a good phase margin.

e.g., —20dB/dec gives a phase margin of about 90°

2Slope must be constant for a decade around the crossover frequency for approximation



Simple Example

Design a lead compensator for the system providing zero
G(s) = = steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 100r/s.
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Simple Example

Design a lead compensator for the system providing zero
G(s) = % steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 100r/s.
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Simple Example

Design a lead compensator for the system providing zero
G(s) = % steady-state error in response to a ramp input, around
5 60° phase margin and a bandwidth of at least 100r/s.
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Simple Example

Design a lead compensator for the system providing zero
G(s) = % steady-state error in response to a ramp input, around
5 60° phase margin and a bandwidth of at least 100r/s.

T
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Simple Example

Design a lead compensator for the system providing zero
G(s) = = steady-state error in response to a ramp input, around
60° phase margin and a bandwidth of at least 100r/s.

0.5 N

| | |
8.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Time (s)
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Interpretation of PD Controller

Consider the PD controller:

K(s)=K(1+Tps)

This is a lead compensator with the pole at s = —o0, or a = 0.
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Example - PD Controller

80 — s

G(s) = 0.05 =505

Design a PD controller such that:

- Steady-state error to step input is zero

- Track ramp with steady-state error less than 0.05

- Closed-loop step response with time-constant less than 0.07s
- Phase margin greater than 60°

33



Steady-State Error

- Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

Consider a proportional controller: K(s) = K

34



Steady-State Error

- Steady-state error to step input is zero
- Track ramp with steady-state error less than 0.05

Consider a proportional controller: K(s) = K

80 — s
K(S)G(S) =K- 0.05m

Type 1 system
- Zero steady-state error to a step
- Steady-state error to a ramp reference r(t) = tis 1/

. B(0) 80
= lim sK — Ko ) = K 0.05— =K 1.
v = lim 7K (5)G(s) A(0) 0-955 05 0

Error=1/(K -1.9) <0.05
Therefore, the gain K > 1/(0.05-1.9) = 10.5

34



Frequency Response
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Frequency Response

60 >

Increase gain by 10.5 to meet steady-state ramp error

20 -
Slope at crossover is too high
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Add Lead Compensator

Goal: Improve phase margin

Add derivative term (Lead compensator)
K(s) = 10.5(1 + Tps)
How to choose Tp?

- Sets bandwidth of the system

- Roughly sets the time constant of the closed-loop step response

36



Bandwidth and Time Constant

Assume: Phase margin of about 90° at a crossover frequency of w.
For frequencies near w., the open-loop gain is approximately:

. . w(?
K(jw)G(jw) = o
The step response is approximately:
K(s)G(s) 1 “e 1 we 1 -1
(s) = P = R i
1+ K(s)G(s) s 14+ == s s+we s s+we s

Gives the time response:

—wet

yt)y=1—e

The system time constant is approximately 1/w.

37



Add Lead Compensator

Goal: Improve phase margin

Add derivative term (Lead compensator)
K(s) = 10.5(1 + Tps)
How to choose Tp?

- Sets bandwidth of the system

- Roughly sets the time constant of the closed-loop step response

Goal: Time constant less than 0.07s

Choose we > 1/0.07 = 14.3

38



Frequency Response
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Frequency Response

Magnitude (dB)
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Frequency Response

Magnitude (dB)
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Zero goes here: 1/Tp ~ 2

Want crossover to be at 14.3r/s

0

—20 |-

—40

T

—60 |-

—80 |-

—100 -

DN

Want slope to be —20dB/dec

Ll Lol Lol Ll Lol L1l

1072

107! 10° 10! 102 10° 10*
Frequency rad/sec

39



Frequency Response
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Example - PD Controller

80 — s

G(s) = 0.05 =505

Design a PD controller such that:

- Steady-state error to step input is zero

- Track ramp with steady-state error less than 0.05

- Closed-loop step response with time-constant less than 0.07s
- Phase margin greater than 60°

Our final controller is:

K(s) =10.5- (1 + s/2)
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Example 910
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Lead Compensator

- Increase the phase near the crossover frequency

- Increases the gain at high-frequencies
— Increases sensitivity to noise and unmodeled dynamics

42



Lag Compensator




Phase Lag Compensator

Lead Compensator ‘
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Phase Lag Compensator

. 10
Increase low-frequency gain, T a=10
without impacting transient i ‘\ 20
behaviour g 2 - 1IN
ID(s) i SO aT] N~ ¢ &
T
- Set break frequency %1 (471 0
below the crossover 0.1 1 10
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) . 0° [—
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Design a lag compensator to achieve a
phase margin of at least 40° and a
steady-state error with respect to a step
input better than 10%.

1

G(s) = (Ls+ )+ 1D)(Es+1)
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Design a lag compensator to achieve a

1 - o
G(s) = — - phase margin of at least 40° and a
(G55t D+ D(Es+1) Goady-state error with respect to a step
input better than 10%.
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Design a lag compensator to achieve a
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G(s) = — - phase margin of at least 40° and a
(G55t D+ D(Es+1) Goady-state error with respect to a step
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Design a lag compensator to achieve a
phase margin of at least 40° and a
steady-state error with respect to a step
input better than 10%.
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G(s) = (Ls+ )+ 1D)(Es+1)
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Design a lag compensator to achieve a
phase margin of at least 40° and a
steady-state error with respect to a step
input better than 10%.

1

G(s) = (Ls+ )+ 1D)(Es+1)
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Design a lag compensator to achieve a

1 B o
G(s) = — - phase margin of at least 40° and a
(G55t D+ D(Es+1) Goady-state error with respect to a step
input better than 10%.
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Design a lag compensator to achieve a

1 - o
G(s) = — - phase margin of at least 40° and a
(G55t D+ D(Es+1) Goady-state error with respect to a step
input better than 10%.
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Design a lag compensator to achieve a
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G(s) = — - phase margin of at least 40° and a
(G5 + D+ 155 +1)  Gready-state error with respect to a step
input better than 10%.
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Design a lag compensator to achieve a
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Design a lag compensator to achieve a

1 B o
G(s) = — - phase margin of at least 40° and a
(G55t D+ D(Es+1) Goady-state error with respect to a step
input better than 10%.
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Relation to PI Controller

What happens when a — 00?
T[S +1 10K
KD, =Ka———
o(s) YaTrs +1 N
K Trs+1 2K NN
- T[S + L K \_
o ID (sl )
_ 1 T
=K (1 * ﬁ) 02K
. 0.1K
We see that a lag compensator is 0.1 02 12 10
a Pl controller with o = oo i
0° I
1
_age //
/
LD —60° /,/
_ 1
-90° _’// L Cr I
0.1 0.2 1 2 10
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80 — s

Specifications:

- Zero steady-state error to step command
- Phase margin greater than 60°
- Closed-loop time constant of 1/w. = 0.07s (w. = 14.3rad/s)

Example 911
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Lead/Lag Compensator




Lead/Lag Compensators

Lead compensator Adds phase at crossover frequency to improve margins
Impacts frequencies above the breakpoint

Lag compensator Adds gain at low frequency to improve steady-state response
Impacts frequencies below the breakpoint

We are free to use lead and lag filters in combination, without them impacting each
other, often called lead-lag filters.

Lead — PD controller Lag — PID controller

A PID controller is a lead/lag filter

D.(s) = K (Tps + 1) <1 + i)
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PID Lead/Lag Filter

Frequency response of PID
T
compensator for T—I =20 10K /

. N /

D) 2K ™ /
I/
I'e \\__—/
[ P
T[ Tl)
0.1 0.2 1 2 10 100
T,
90° -
-
. ]
60 7
300 pd

LD(s) ©0° ”//

—30° P
/
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A
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Satellite Stabilization Problem

Disturbance

torque
- Ty
Compensation Spacecraft
+
+ + 0.9
Ocom D(s) T \\2‘4/ 7 ©
— ¢ .
Sensor
O 2
s+2

Design a PID controller for

- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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- Zero steady-state error in response to a step disturbance torque
- A phase margin of approximately 60°
- As high a bandwidth as possible
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T T T T T T T T

Step response to reference
0.5 4

10 n
Step response to torque disturbance

T

0 10 20 30 40 50 60 70 80 90 100
Time (s)
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Summary - Loop Shaping

Idea  Can relate the shape of the frequency response of the open-loop system
to the closed-loop sensitivity and complementary sensitivity functions

- KG large for small w (Steady-state error)

- KG small for large w (Modeling errors, etc)
- Crossover frequency chosen according to desired closed-loop bandwidth
- Good stability margins / slope of KG equal to —20dB/dec at crossover

Lead compensator Lag compensator

- Increase slope by 20dB/dec in - Use to increase gain at low
frequency range frequencies

- Use to increase slope / phase near - Decreases slope by 20dB/dec /
crossover frequency decreases phase in frequency

- PD controller is a lead el

compensator - Pl controller is a lag compensator
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A Real System Design




Atomic Force Microscope

s 4+ 780s 4+ 1.69 - 10°
(s + 3000)(s 4 1000)(s + 100)(s2 4 50s + 6.25 - 10°)

- Track ramp inputs

G(s) = 8.88-10°

- Reduce sensitivity to noise at resonant frequency

- Minimize response time
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Closed-Loop Sensitivity
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Step Response & Resonance Disturbance Rejection

0.05
0.04
0.03
0.02
0.01

-0.01 4
-0.02 - 4
-0.03 - 4
-0.04 - 4
-0.05 1 1

Tracking error
o

N
!

'
=
!
——

Response to noise
at resonant frequency
o =
il
———

'
N
!

1
0.05 0.1 0.15
Time (s)

o

57



Frequency Response
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Track ramps — Add two integrators (1 + ﬁ)



Closed-Loop Sensitivity
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Step Response & Resonance Disturbance Rejection
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Frequency Response
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Reducing sensitivity at resonance, requires a high gain.
Problem: drop of 180 degrees of phase.



Notch Filter
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Frequency Response
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Closed-Loop Sensitivity
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Frequency Response
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Increase gain to get best tracking performance.
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Step Response & Resonance Disturbance Rejection
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Result of a Scan
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